New to die cutting? Consider this.
According to IQSDirectory.com:
Chapter 1: What is Die Cutting?
“Die cutting is the mass fabrication of cut-out shapes by shearing a stock material such as paper and chipboard using tooling called a die. A die is a specialized tool used in manufacturing to cut or shape a material fitted into a press. It has sharp edges used to pierce the material; it contains the custom two-dimensional shape of the finished part. The die cutting process works in the same principle as the cookie cutter where the dough is cut into smaller sizes. Examples of materials which can be die cut are paper, fabric, rubber, fiberglass, metal sheets, and plastic.
“Die cutting started in the mid-19th century to modernize the shoemaking industry. Before die cutting was invented, manual labor was utilized to outline and cut the soles of the shoes by hands. This process required more time and manpower while the rate of production was low. The invention of die cutting resolved these problems in the industry. Patterns were made allowing shoemakers to replicate and standardize the sizes of the soles. Through years of discovery, die cutting had extended to revolutionize other industries and it is still evolving to cater to increasing demand and in making more complex designs. Today, this method is widely used in the manufacturing sector such as packaging, consumer goods, and automotive industries. Applications of die cutting can even be found in our homes and offices.
“Since it is a simple and straightforward process, die cutting is suitable for low or high volume manufacturing. In industrial applications, the machine may be located directly downstream, while the starting material may be the outgoing product from a preceding process. The die cutting machine also has many capabilities, making it a versatile and useful asset. It can perform other operations aside from cutting, such as forming, perforating, and scoring. The process is done on a press through a single or series of strokes.
“Flatbed, rotary, and semi-rotary die cutters are considered industrial-scale die cutting machines, designed for thicker and more rigid substrates able to produce parts at a fast turn around. Meanwhile, manual and digital die cutting equipment are utilized to create simple and accessory parts. Its production rate is relatively slower and therefore suitable for low volume orders.
“Flatbed die cutting is also known as steel rule die cutting. A flatbed die cutting machine uses a hydraulic press or a mechanical or electrical system to press down the custom-designed steel rule die to the material. This method is suitable for cutting thicker sheets (over 1/8”) as it is capable of exerting high pressures. A variety of materials can be processed using a flatbed die cutter, ranging from soft to semi-rigid materials with varying thickness.
“Flatbed die cutters can operate in batch or semi-batch (wherein products are collected periodically) production and are suitable for processing small production orders and larger parts. This machinery involves the following sub-processes to produce the finished part from the substrate sheet:
“A progressive die is used when there are a series of cutting and secondary steps involved to create a finished product. Each stroke creates a different cut or impression, and in between strokes, the sheet is transferred to the next operation. This process requires precise set-up and alignment of the stock material. The part remains in the stock material until it comes to the last station where it is fully separated. The more operation the die performs, the more complex design the die must have; also, the more difficult to optimize the pressure to be used.
“A combination die performs multiple cutting and forming operations (such as extruding and bending) using a single stroke.
“Rotary die cutting machines operate in continuous production mode. It operates at a lower cutting pressure and constant speed, which is ideal to be located directly downstream of a preceding process. Hence, rotary die cutting machines are used to produce simpler and lighter parts. It is suitable for a variety of materials and gives a faster turnaround time than a flatbed die cutter.
“The stock material, or referred to as web, in the form of an individual sheet or roll, passes through the cutting assembly. The cutting assembly is composed of a rotating cylindrical die affixed to a rotary press and an anvil cylinder pressed against the rotary press. The two cylinders are continuously rotating in opposite directions along the horizontal axis. As the web passes through the two cylinders, it is compressed until the sharp edges of the die pierce through the material’s thickness.
“A rotary die cutting machine is also capable of full and partial cutting. However, it is not capable of punching holes. Like flatbed cutting machines, the steps are the same but differ on the mechanism of the cutting assembly.
“There are two types of rotary dies, depending on the properties of the material to be cut and economics.
“A solid die has engraved, abrasive patterns on the rotating cylinder itself. This type is intended for higher pressure applications than the flexible die. The solid engravings can exert higher forces that enable the die to create deeper cuts on thicker and multi-layered materials. The solid die can be sharpened once worn-out. This type of die is more durable and flexible. However, it is more costly in terms of initial and maintenance costs.
“When operating a rotary die cutting machine, the following operating and material conditions are considered:
“This type of die cutting machine is almost similar to a fully rotary die cutter, except that it only uses one cylinder, which contains the die, for cutting. The semi-rotary die cutting equipment is programmed such that the cylinder moves in a single direction while the web moves back and forth. The movement of both cylinder and web creates multiple cuts, eliminating the need for another cylinder.
“Semi-rotary die cutting machines are less expensive than fully rotary and flatbed die cutters. However, it is only limited to low-pressure applications.
“So far, industrial-scale die cutting machines have been discussed. The following equipment creates simpler parts with relatively low production rate, hence considered as small-scale:
“A digital die cutter is a versatile cutting machine which is controlled by computer software or cartridges. Unlike the traditional die cutters, it does not have steel dies but is equipped with sharp blades inside the equipment. This equipment is powered by electricity. Like the manual die cutter, digital die cutting machines can be installed indoors.
“The die can be customized to add details and auxiliary purpose to the finished part, depending on the end application. The capabilities of a die cutting machine are:
“Through cutting is a type of die cut in which the sharp edge of the die extends through the material’s entire thickness, resulting in full separation of the part. For multi-layered materials, the face, adhesive, and backing material layer are cut through.
“Kiss cutting, on the other hand, is a type of cut in which the edge of the die partially cuts through the material’s thickness and only forms the perimeter of the finished part. For multi-layered materials, only the face and adhesive layer are cut. The part is not fully separated from the stock material but can be easily detached on the kiss cut.
“Perforating, or sometimes called piercing or coining, is a type of die cut which leaves a series of small, punched holes placed collinearly in the material by using a pressurized force on the finished part. The spacing of the holes determines the ease of cutting the material. The perforated lines will not result in the separation of the part from the stock material, but it can easily detach along the line.
“In cut scoring, the die leaves a partial cut or a small indent at a single stress point aligned collinearly on the material rather than cutting its thickness entirely. The die only cuts less than half of the material’s depth, piercing it to make tearing easy.
“Creasing also creates indents aligned collinearly by applying pressure to reduce the material’s thickness on one or both sides of the material. The die does not create a pierced or cut perimeter, and the depth is not extensive as a cut score. The crease score makes even folds to aid in creating a three-dimensional profile out of the material. The folds created from this process are more flexible and precise.
“Broaching uses dies with a combination of multiple teeth that pierces together on a single stroke to cut extremely thick or rigid material. Other die cutting machine capabilities utilized to decorate the finished part are embossing, engraving, forming, and drawing.
“The design of the part and its details, together with its material properties, have an impact on the manufacturing process and the outcome of the finished part. Poor design can lead to losses during processing and handling of the finished part, as well as inconvenience to the end-user.
“The following are the four basic elements of die cut parts and the minimum guidelines when designing. All of these primarily consider maximum reliability during handling and service life.
Please submit your Die-Cutting requirements and one of our specialists will contact you!
Request for Quote ×